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An attempt is made to show that fundamental particles are manifestations of 
the geometry of space-time. This is done by demonstrating the existence of a 
purely geometrical model, which we have called spherical rotation, that satisfies 
Dirac's equation. The model is developed and illustrated both mathematically 
and mechanically. It indicates that the mass of a particle is entirely due to the 
spinning of the space-time continuum. Using the model, we can show the 
distinction between spin-up and spin-down states and also between particle and 
antiparticle states. It satisfies Einstein's criteria for a model that has both wave 
and particle properties, and it does so without introducing a singularity into the 
continuum. 

1. I N T R O D U C T I O N  

The  oldest  m e t h o d  of r ecord ing  m o t i o n  is qui te  s imply  the m e t h o d  of  
l ay ing  down  a trail .  The  trail  connec t s  the s tar t  to the end of  the jou rney .  
Take  the example  of  a dog  t ied  by  a long rope  to a tree. H e  runs  twice 
a r o u n d  his kennel  a n d  then  lies down.  His mas te r  returns,  sees the rope,  
and  ins tan t ly  knows  tha t  the d o g  has  c i rc led his house  twice. 

In  any  theory  of the c o n t i n u u m  that  pu rpor t s  to descr ibe  ma t t e r  as a 
d i s to r t ion  of space in the m a n n e r  first  sugges ted  b y  W. K.  Clifford,  2 the 
mo t ions  of the ma t t e r  mus t  no t  des t roy  the con t inu i ty  of the space.  A n y  set 
of  curvi l inear  coord ina te s  used  to m a p  the space  in the vicini ty  of the 
par t ic le  must ,  l ike the rope  a t t ached  to the crog, pa r t i c ipa te  in the a l lowed  
mot ions  of the space.  This  requ i rement ,  we have  been  ab le  to show (see 
Append ix ) ,  is equiva len t  to the asser t ion that  the  only  a l lowable  mo t ions  
mus t  be  represen ted  by  a simply connected group, namely ,  the universal 

covering group of the  Lie g roup  used to descr ibe  a local  pa r t  of  the mot ion .  

1 Present address: RR # 1, Inverary, Ontario KOH 1X0, Canada. 

2W. K. Clifford (1956). All those who searched for a unified field theory subscribed to a 
geometrical interpretation of matter, including Einstein, Weyl, and Eddington. 

437 

0020-7748/80/06004)437503.00/0 �9 1980 Plenum Publishing Corporation 



438 Battey-Pratt and Racey 

This model shows that a persistent particle must be described by a compact 
group. The simplest compact universal covering group is named SU(2). 
The model to be described has SU(2) as its motion group. 

2. THE MECHANICAL MODEL: THE SPHERICAL 
R O T A T O R  

The mechanical model that led to the geometric solution of the Dirac 
equation can be constructed roughly by  suspending a practice golf ball 
from flexible wires that are, in turn, fixed onto a wooden framework. It is 
sufficient to choose six wires corresponding to the positive and negative 
axes of a three-dimensional coordinate system (Figure 1). The ball can 
always be rotated indefinitely without the wires becoming entangled. Each 
double revolution returns the system to its original configuration, provided 
each wire is kept in the correct relation to all the others. 

The simplest workable relation is one that requires all spheres con- 
centric with the ball to remain rigid; that is to say, the six points where the 
wires intersect an imagined spherical shell surrounding the ball must 

Fig. 1. Mechanical model for demonstrating spherical rotation. 
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Fig. 2. Configuration of the z axis of the model. 

remain equidistant f rom one another, though the shell as a whole is free to 
turn about  the center. 

Whereas the ball of this model can, in principle, be turned about  any 
axis starting f rom any initial position, in practice, because of the restraints 
(flexibility, extensibility, etc.) of the materials used, there is a best way for 
demonstrating the motion: 

Position the ball so that the point where each wire is attached to the 
ball faces the point where it is attached to the frame. (There must be 
enough slack in the wires to allow for what follows.) Next, turn the ball 
through 180 ~ about  a horizontal axis, say the x axis. The vertical wires that 
were in the direction of the z axis now take on the configuration of Figure 
2. Now rotate the ball about  its vertical axis. Here the configuration of the 
z axis wires retains its shape and rotates at half the angular velocity of the 
ball. 

We can go on rotating the ball indefinitely, but it will be found that 
after every two rotations the system returns to its original configuration. 
Figure 3 illustrates the sequence of configurations of the model during one 
such complete cycle. 

The wires of this model can be thought of as a set of curvilinear 
coordinates used to describe the positions of points in a medium that 
surrounds the spinning core. 

For an alternative model, imagine a large spherical canister which is 
completely filled with a gelatinous medium. Imagine, also, that there is a 
small magnetized steel ball set in the center. We will presume a reasonable 
degree of adhesion to exist between the jelly and the walls of the container, 
and between the jelly and the central ball. By means of external electro- 
magnets we now invert the steel ball by half a turn about  the x axis of a 
coordinate frame centered on the ball. Because of the resilience of the 
medium this can be effected without tearing or loss of adhesion. Again, 
using the external electromagnetic field, we set the ball spinning about  the 
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Fig. 3. Top: Rotat ion of the core is anticlockwise viewed from the upper (positive) z 
direction. (a) Initial position. (b) After  a quarter  turn of the core. (c) After  half a turn of the 
core. (d) Three quarters turn of the core. (e) After one full turn of the core. (f) One  and  a 
quarter  core turns. (g) One  and  a half  core turns. (h) One and  three quarter  core turns. (i) 
Two full turns of the core returns the system to the initial position. 
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z axis. A wave of strain will rotate  in the jelly at half the f requency of the 
steel ball. After  every two turns of the steel ball, the system will return to 
its initial state. The  jelly will a c c o m m o d a t e  the mot ion  without  being torn 
or disrupted in any  way. 2 

3. T H E  M A T H E M A T I C S  O F  S P H E R I C A L  R O T A T I O N  

In  the Appendix  we have shown that each configurat ion of the 
spherical rotat ion model  can be  represented by  a point  on  a Eucl idean 
four-dimensional  hypersphere (the Lie group space). Taking  the hyper-  
sphere to be of unit  radius, we can describe the t ransformations f rom one 
configurat ion to another  by  a closed unimodular  group. (Making this 
choice is, in the language of q u a n t u m  physics, equivalent to the procedure  
of normalizing the wave function.)  If  we center this unit hypersphere  at the 
origin of a rectangular  Cartesian coordinate  system, and  let the vector (1, 
0, 0, 0) f rom the origin locate the point  corresponding to some chosen 
initial configuration, then any  other configurat ion will be given by  the 
vector  (a,fl ,%6), where a2"~"fl2At" y2 - J t '~2=  1. 3 m rotat ion in the spherical 
mode  can be represented by any  operator  that will t ransform vectors of 
this type (or their equivalents) into one another. Here  we shall describe two 
of the most  useful representations. 

(1) The vector (a, fl, y, 3) can be written as the qua temion  

~ =  a + i f l + j T + k 8  

w i t h  [~b[ 2 ~- t~*r = 0l 2 + • 2 _1.../2 _[_ ~ 2 = 1, where ~* is t he  quaternionic c o n -  

j u g a t e .  
Transformat ions  of this quaternion into any other unimodular  

quaternion can be effected by multiplying by another  suitable quaterrtion. 
Thus,  unimodular  quaternions do du ty  for bo th  the configurat ion vector 
and the rotat ion operator.  

2If we replace the canister by a surrounding region of stationary jelly, and the steel ball by a 
core of spinning jelly, then, insofar as there is strain neither in the stationary region nor in 
the core, and their potential energies are therefore both zero, we may have an example of a 
soliton. For a general article on Solitons see Claudio Rebbi (1979), p. 92, with further 
bibliography furnished on p. 168. This might be worth pursuing though we, ourselves, have 
not done so. 

3For example, referring to Figure 3, let (1, 0, 0, 0) stand for configuration (a), (0, 1, 0, 0) for 
configuration (c), then 0a) would be (2 -1/2, 2 -1/2, 0, 0), (d) would be ( - 2  -I/2, 2 -1/2, 0, 0), 
(e) would be ( -  1, 0, 0, 0) etc. 
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(2) The quaternion a + i/3 +j~, + k8 can be represented by  the column 
vector 

8 
y 

/3 

This particular arrangement of the coefficients has been chosen to achieve, 
in what follows, conformity with the traditional formulations of quantum 
physics. 

Now because i(a + i fl + j y + k r )  = - 13 + ia - j  8 + k't, left multiplica- 
tion by i has the same effect on a, fl, y, and 6 as the matrix product: 

0 0 0  
0 0 1 0 = 
0 - 1  0 0 
1 0 0 0 

similarly, j and k are, respectively, represented by 

i 0 - 1  0 0 0 - 1  
0 0 0 
1 0 0 

and 

O 
1 0 0 
0 0 0 
0 0 - 1  

Thus the full operator a + ifl +j~, + k/~ is represented by 

a - t ~  - y  - / 3  

8 a /3 - ' t  

- / 3  ~ 

/3 ,/ - 8  a 

This matrix can be partitioned as shown. Each of the quadrants is 
recognizable as the matrix representation of a complex number. Hence we 
can write 

[ a+i8 --'/+ifl] 
r y+ifl a--iS 

The determinant of ~, is a 2 + 8 2 + ,/2 + fl 2 = 1. This matrix is unitary as well 
as unimodular or "special". Thus, this representation of spherical rotation 
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consists of the special unitary matrices of order 2, from which comes the name 
SU(2). 

The operand form of ~ is 

I a + i 8  
~'+ifl I 

This form is called a spinor, a word coined by P. A. M. Dirac. 
Table I shows a comparison between the quaternionic and the SU(2) 

representations of spherical rotation together with an interpretation of the 
symbols. 

4. SPIN 

Rotation that is a linear function of time is referred to as spin. 
A model of spherical rotation whose initial configuration is given by 

the spinor [1] can be rotated into the position [~] by the operator [o 0 ]. 
This is a rotation of the core of the model by 180 ~ about the z axis. It; is 
represented in the Lie group space by a quarter turn around a great circle 
in the four-dimensional hypersphere. An intermediate position is given by 
the spinor 

[ OS0o.iO0] [e'~ 0] 
where 0 is the angular displacement along the great circle. Note that this 
represents a rotation of the core of the model by 20 about the z axis. The 
rotation that brings the model into this position from the initial configura- 
tion is represented by the operator [ co8 e~ ]. Thus, if we introduce the time 

parameter, t, then the operator [e~, _ o  ]wi l l  generate the spin [~'~] 

representing core spin of angular ~Telocity 2~o. 4 Similarly, 
J 

cos ~ot i sin tot ] 
i sintot costa J 

generates a spin in which the core of the model has angular velocity 2~0 

4The configuration of the z-axis wires of the model (Figure 2) rotates at half the angular 
velocity of the core, that is, with velocity ~0. 
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about the x axis, and 

[ costot -s intot  ] 
sin tot cos tot 

does the same about the y axis. 
In the traditional analysis of spin, it is usual to imply that the process 

of inverting the axis of a spinning object is identical to reversing the spin. 
When, however, the spinning object is continuously connected to its 
stationary environment, this ceases to be true; and we must make a careful 
distinction between the inversion and the reversal of spin. This distinction 
affords us insight into one of the most fundamental properties of elemen- 
tary particles. 

To  reverse the z axis spirt [ eo~ l o n e  can reverse time t - + -  t, or one can 
reverse the angular velocity of the motion: to-+--to. The reversed spin 
becomes [e ~ '~' ]. This motion can be generated by the reverse spin operator 

["-o '~ 2 ,  ] from the initial configuration [o ~ ]. We shall suggestively call this 

antispin and refer to the antispin state as opposed to the normal spin state of 
spherical rotation. 

To invert the spin axis of the core of our model it is necessary to turn 
the spinning core about one of the axes perpendicular to the spin axis, for 
example, the y axis. The operator that will achieve this is [0 01 ]. There- 
fore, the inverted spin state is given by 

[0 O1][e~'~t]_~[eiOtl 
Now, 

ol]Eeiotl=I  ol]E e=o e=l[ O ] 
=I :]I e = ~  
=Ie= 0]I0 ] 

0 e itot 1 

Thus, the inverted spin state is generated by the action of the reverse spin 
operator on the initial configuration [o]. Lastly, we have the inverted 

antispin state [e_~ ]. 

The contrast between the above four states is important for the later 
understanding of particle physics. However, it must be understood that 
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there exists an infinity of intermediate states of our model. The normal 
spin state axis can be oriented between the extremes of z axis spin-up and 
spin-down. The intermediate inverter is 

cosx - sinx ] 
sinx cosx ] 

where 2X is the axis angle with respect to the spin-up direction. The 
intermediate spinor is 

I e itot COS X 1 
e i~ot sin X J 

which is generated by 

cos tot + i sin tot cos2x 
i sin tot sin 2 X 

i sin tot sin 2 X ] 
cos tot - i sinwt cos 2X J 

from the initial position [~~ The corresponding antispin data are ob- 
L ~mxj" 

tained by taking the complex conjugate formulas. There is also a con- 
tinuum of states intermediate between normal spin and antispin. Thus, 
[e  ] . . . .  I r176 ] will be in the normal o _0, operating on the lmtlal configuration styx 

spin state for X = 0, and in the antispin state for X = or//2- 

5. EQUATIONS OF MOTION OF THE SPHERICAL SPIN 
MODEL 

Suppose we have a model of spherical rotation whose initial config- 
uration is given by the spinor 

[ a+i~  

Without loss of generality, we shall suppose spin to be generated by the 
[e  ,' 0 ] The center of the spinning core is stationary, and the operator o e-"~ " 

phase of the rotation is, at each instant, the same throughout the space 
. l  

occupied by the model. It will be useful to assume that the stationary 
framework is large and far away from the core so that we can ascribe the 
configuration spinor (which describes the phase of the rotation) to every 
point of the local region. 
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Accord ing  to some other  observer moving  past  our  system with 
velocity - g ,  the system is represented by the spinor 

ito(t -- e'~/c2) 
eple # 0 

- i ~ ( t -  e-~/~2) 
0 ~2 e B 

Here we have used the Loren tz  t ransformat ion t ' ~ ( t - g 4 / c 2 ) / f l ,  where 
f l= (1  - v2/c2) 1/2 and  g . f =  vxx + Vyy + vzz. Thus, the moving  observer sees 
the center  of our  model  moving  past  h im with velocity g while the phase of  
the rotat ion varies not  only  with time but  also f rom place to place. I n  fact, 
f rom the exponent  factor  t - g . f / c  2, we can deduce that  he sees each 
particular phase of the mot ion  sweeping forward  with a velocity of c2/[F[ 
in the direction of g (Figure 4). Regions of constant  phase  fo rm planes 
perpendicular  to the mot ion  of  the model.  

The observer also reckons that  the configurat ion rotates about  the core 
with angular  velocity t o ( 1 -  v2/c2)  1/2. This decrease f rom the value to is a 
manifestat ion of the relativistic principle of time dilatation. On  the other  
hand,  this rotat ion combined  with the finite forward  mot ion  of the phase 
produces  a conf igurat ion helix whose pitch decreases with increasing core 

phase in advance of core \ x x phase lagging behind core region 
I \ L v  ~- 

wave phase and core velocity vectors 
(unit time) 

Fig. 4. Top: The motion of the wires of Figure 2. The angular velocity of the core is 2~ and 
that of the wire configuration is ,o. Bottom: The same with its core center moving to the right 
(in the z direction) with velocity ,5. The second figure shows the situation 8~r/~(l - v2/c2) t/2 
time units after the first. Note how the wires become helices which rotate contrary to a 
corkscrew with respect to the advancing core center. (]'he helix of a corkscrew advances 
along a fixed locus.) 
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velocity (exemplified by a select pair of model wires in Figure 4). 
Measured at the position o f  the observer, this helical configuration rotates 
with angular velocity ~/(1 -v2/c2)1/2. 5 

It should be noticed that the mathematical description of the motion 
of our model describes only the configuration phase: it does not indicate 
the position of the core center. It follows that a theory entirely based on 
spinors and their equations will be essentially incomplete. 

Within this incomplete theory, we can formulate the general law of 
motion for the phase of the configuration surrounding the model by 
deriving the differential equation that is independent of 15: 

it~(t--~.~/c2) 
0__~_~ = L gale 13 

Ot Ot - i~(t- ~.~/c2) 
ga2 e $ 

ico i~(t-~.~/c2) 
gal --~ e 13 

( i t o ) - i ' ~  
ga2 - - ~  e 

~ I it~(t-- ~'~/c2) 
= gal e. 13 

- -  i ( o ( t  - -  ~ ' ~ 1 c 2 )  

-- ga2 e lJ 

0t 2 
0 i~ 
0t /3 

iro(t--~.~/c2) 
gate P 

- -  i ~ ( t  - -  ~ ' ~ / c 2 )  

-- ga2 e P 

02 2 =--Sga 

Oga = itOVx 
ax c2B 

i~(t -- ~'~/c2) 
gal e 13 

-- ito(t-- 6"?/C2) 
-- ga2 e /3 

hence 

02ga 
OX 2 = C - ~  ga 

5The different behavior of these two aspects of the angular  velocity illustrates the difference 
between a contravariant and  a covariant vector in Minkowski space, t o o - - v 2 / c 2 )  I/2 is, as 
already mentioned, related to the time component  of a contravariant space-time vector; 
whereas, we shall, when we come to compare our model with an  elementary particle, see that  
w / ( l -  v2/c2) I/2 is related to the energy of a covariant m o m e n t u m  vector. 
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Likewise, 
02 ~ 2 2 

3y---- ~ ---_ C4fl---~b 

Hence, using the notation 

we have 

THUS, 

_ _  _~~ and 0 2~b 2 2 

az 2 -- c432#, 

•2, 
02t~ "t" 02--'-'-~-~ "4- 02~ 

9 = ~ 3),2 3z----7 

0) 2 0)21) 2 

c,B2 -- c4B2  

1 0 2r = ~222 r 
~2t~ C2 Ot 2 

6. FUNDAMENTAL PARTICLES 

There have been various attempts to describe fundamental particles as 
forms of the continuum.l But, in conventional thinking, a paradox arises if 
particles are considered free to spin. For, if there is indeed a continuum 
that at one point is to be ascribed to the particle, and, at another, to the 
surrounding void, then the coordinate lines used to map out the whole 
space at any given instant would, with the passage of time, become twisted 
up and stretched without limit. Alternatively, they would rip, and one part 
of the continuum would slide past another along a surface of discontinuity. 

Now we maintain that the concept of "ripping the vacuum" is intui- 
tively absurd, and must be rejected, because it introduces discontinuity 
into a theory whose basic assumption is that we should be able to explain 
the universe as being continuous. Likewise, an infinite degree of twisting 
up of the continuum must also be rejected as unworkable. We therefore 
introduce the following postulate: 

Postulate. The only allowable persistent motions of a local region of 
the continuum with respect to the ambient remainder are such that their 
motion groups are simply connected and compact. 

Under these circumstances, the motion in the continuum will be 
cyclic, and the system configuration will repeatedly return to each phase of 
the cycle (see Appendix). 

The simplest possible spinning element in the continuum is one that 
rotates in the spherical mode. Imagine, therefore, that the wires of our 
model are Gaussian coordinate lines for a reference frame in space. The 
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origin is in a part  of space that is spinning (the core) relative to the 
surrounding parts. The mathematics  that we have developed so far is 
therefore appropriate. The configuration of the model becomes the config- 
uration of space. Here we must  sound a cautionary note. The model was 
described by reference to a rectangular coordinate system in the flat space 
in which the model was presumed to exist. Now we are assuming that our 
spinning configuration is the space itself. Use of the model formulas 
therefore means that we shall be describing real space by reference to a 
nonexistent background. This will work for the same reason that enabled 
Newton to develop a theory of gravitation on the assumption that space 
was everywhere Euclidean. But, as was the case with Newton's  theory, our 
theory may require later refinement. 6 

Our conclusion, then, is that  the spinning continuum is surrounded by 
an undulating, wavelike region whose phase, @, satisfies the equation 

1 0 2t~ 0) 2 

v % '  at 2 = 

This looks very like the K l e i n - G o r d o n  equation for an elementary particle. 
We shall therefore make the identification exact. The usual formulation of 
the Kle in -Gordon  equation is 

1 0 2x~ m2c 2 V2x~ . . . .  X~ 
C 2 Or2 ~2 

where m is the mass of the particle, h is Plank's constant divided by 2rr, 
and a/ is the wave function for the particle. The wave function must, 
therefore, be identified with the spinor that designates the phase of the 
spherical spin in space and time. We can now see why the wave function 
has no physically meaningful magnitude, but is usually normalized. The 
identification requires that we put 

m2c 2 r 2 

•2 C2 

whence 

Iml =  l'01 

6For example, a radially dependent gauge transformation can be added to an exact theory of 
particles (that includes a description of the core location) to bring about a contraction in the 
volume of the particle's space. This could account for the gravitational field. 
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Thus,  we deduce that  when  we have a spinning region of  the cont inuum,  it 
interacts with other  spinning regions in such a way  that  we find it 
necessary to in t roduce a measure  for  the inertia of  the interactions.  We  
arbitrarily define the unit  of mass. But  it would  appear  that  the inertia of  
the spinning region is simply a manifes ta t ion of its angular  velocity; and, if 
this is measured in radians per second, then the ratio of the arbi t rary mass 
unit  to the spin f requency is h / c  2, which must, therefore, be a constant .  
This is the significance of  Plank 's  constant .  

The  ascription of mass to the angular  velocity of  the spin is relative to 
the observer and  measured  at his location. 7 So a particle, whose mass is m 0 
when stationary, has a mass m o / ( 1 - v 2 / c 2 )  1/2 when in mot ion  with 
velocity 6 (see page 458). Ano t he r  consequence of  the identification 
rnc 2= hto is that  the conf igura t ion spin, that  is, the outermost  undulat ions  
of the system, is the de Broglie wave. This wave embodies  a core region 
that, in the s tat ionary particle, spins with f requency to /~ .  This is the 
Zi t terbewegung that  was first studied by  E. Schr6dinger (1930). In  the 
moving particle, the Zi t terbewegung f requency slows to ( to /~r ) (1-  
V2/C2) 1/2 (see page 458). 8 

To  increase our  insight into the e lementary particle fo rmed by the 
spherically spinning manifold,  we shall establish a first-order differential 
equat ion for the spinor as is done  in relativistic quan tum mechanics.  The  
s tandard  first-order opera tor  in Minkowski  space is the quad, ["], whose 
second-order  derivative is the d 'Alember t ian  [ : f f f i V 2 - O 2 / c 2 0 t  2. The 
K l e i n - G o r d o n  equat ion is of ten written in the fo rm 

([]2 -- m2c2/~2)xi t ~_ 0 

The quad  operator,  as normal ly  used, is a four-dimensional  vector opera-  
tor. We shall modi fy  it so that  it becomes  a spinor operator.  In  tradit ional  
quan tum mechanics  it is usual, at this stage, to in t roduce a group of  
Hermit ian  matrices k n o w n  as Pauli 's  spin matrices. We shall not  do  that  

7We shall use the word "observer" in the way that is usual when discussing different reference 
frames. At the level of an elementary particle, the notion of a real observer ceases to have 
meaning. We shall retain the word, however, as meaning the person or object (in this 
context, the other interacting particle) to w h o m  the relevant calculations apply. 

Sin traditional quantum theory, the mathematical formalism that produces the Zitterbewe- 
gung term indicates a frequency that increases with the particle's motion. This is because the 
formalism is designed to predict the results of actual measurements. A measurement made 
on a moving system is made with reference to the stationary framework of the measuring 
device. It is the projection of the spin of the moving core onto the stationary measuring frame 
that increases in frequency. Most texts on  relativistic quantum theory go through the exercise 
of using the established mathematical formalism to calculate a particle's velocity. We give, as 
an example, J. McConneU (1960). 
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here as we have no reason to use Pauli's matrices and no interpretation for 
them. We shall therefore introduce the operator 

0 8 - i - - i ] ~ z  
[:]-- I 0 i 0 1 0 ]-@Y + [ 0 

We have a physical interpretation for each term in this expression. The 
matrices used form a basis for the algebra of SU(2). Each of the space 
term matrices turns the derived spinor in the term through a quarter turn 
(or the core through a half t u r n ) a b o u t  the associated axis. The qua- 
ternionic form of the operator is 

8 ~ . ~  ic~)t + i  + J ~ y  +k--~- z 

which is strongly suggestive of the usual quad operator. The quaternionic 
form reminds us that there is a conjugate operator 

1 0] i0 i 01 D * = [ O  1 i O ] ~ x - - [  0 i 0 l 

We note that [-I*D = [ o 1 o ][:]2, where E] 2 is the d'Alembertian operator. 
Let us now calculate De?, where e? is the spinor for spherical spin in 

the manifold. To save space, since the exponential parts of the spinors 
occur so frequently, we shall introduce the abbreviations 

i t o ( t  - -  6 . F / c 2 )  - -  i t o ( t  - -  6 " F / c 2 )  

e + = e  # , e-----e # 

Using the derivatives from page 457, we see that 

to e?l e+ + 
["]e?= - ~  --e?2e- c2fl k e?le + 

1 o [0e+] 
1 + ~ . / c  e?,e + ~ -  _ ( ~  + i~ , ) /c  -~ e?~e - 

(t)x~i.i.i;y)/ce?le+ 1-flz/ce?2e- 

o r  

t o  ! 

D~ = ce? (A) 
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where we have defined the quantity 

~ , = f l [  ( l+vJc)  -(v~+iVy)/C] 
(v~-ivy)/c - ( 1 - v J c )  'p 

Now we have already seen that [ : ] * [ ~ =  [:]2~ = (0)2/C2)t~. Hence 

, t O  t ~ 2  [] T~ =-~ 

or 

~o 

We can combine (A) and (B) into one equation by writing 

~= 

t~l e +  

t~2e - 

(l+vz/C) (v~+ivy) 
fl ePle + cfl 

(v x"  iVy) (1 - vJc) 
eft ~le + fl 

r - 

~b2e - 

Then 

0 0 
1 0 

0 1 
0 0 

o 1 o o~ 
o ~-~-~ 
1 

+ 

i 0 
0 0 

0 0 
0 - i  

o] 
o o~ 

- i  
0 

+ 

- 1  0 
0 0 

0 0 
0 - 1  

Ty 

i 
0 + 
0 
0 

o o !] 
- i 0 ~ 
0 - i 0z 
0 0 

0 0 
=_~ 0 0 

c 1 0 
0 1 

(B) 

10]  
0 1 

0 0 
0 0 
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The top left quarter partition of the left-hand side of the equation, being 
the statement [[]q~, is equated to the lower half partition of (to/c)~ by 
means of the partition-reversing operator 

001 1 0 0 0 
1 0 0 
0 1 0 

The question naturally arises, is this equivalent to Dirac's equation? 
To see that it is, we write {' in place of 4~, mc/h in place of o~/c, 

multiply by hc, extract the factor i from the space terms, and rearrange to 
forln 

~ 

- 1  
0 
0 

- 1  
0 + 
0 
0 

- 1  
0 
0 
0 

oo] o 
0 0 O~ i 
0 1 - ~ x +  0 
1 0 0 

~176176 1 0 0 0{, 

0 1 0 ]--~z J l + 
0 0 - 1  

- i  0 
0 0 
0 0 
0 - i  

0 
o ok 
i 0y 
0 

0 0 - 1  0 ] 
0 0 0 - 1 ] mc2{, 

- 1  0 0 0 
0 - 1  0 0 

O,I, 
1 0 ih 

= 0 1 -~ 
0 0 

We can now introduce a similarity transformation. The matrix 

A = A - l =  

--2 -1/2 0 2 -1/2 0 

0 --2 -I/z  0 2 -1/2 

2-1/2 0 2-1/2 0 
0 2-1/2 0 2-1/2 

is its own inverse. This gives the following transformations: 

A I A - I =  I, 
0 

A 0 
- 1  
0 

0 lO 1 [100o 
0 0 - 1  A-l__ 0 1 0 0 
0 0 0 0 0 - 1  0 

- 1  0 0 0 0 0 - I  
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(It was this result that dictated the form of A.) 

A 

0 - 1  0 O] 

- 1  0 0 0 J A - I =  
0 0 0 1 
0 0 1 0 

0 0 0 1]  
0 0 1 0 
0 1 0 0 ' 
1 0 0 0 

0 - i  0 0 ]  
i 0 0 0 A -  

A 0 0 0 i 
0 0 - i  0 

1= 
0 0 0 i |  ] 0 0 - i  0 
0 i 0 0 ' 

- i  0 0 0 

A 

- 1  0 0 0 ] 
0 1 0 0 I A -  
0 0 1 0 
0 0 0 - 1  

0 0 1 0 
0 0 0 - 1  
1 0 0 0 
0 - 1  0 0 

Hence our spinning manifold equation becomes 

+ 

0 0 1 
0 1 0 OxI' 
1 0 0 --~-x + 
0 0 0 

0 0 1 0 
0 0 0 - 1  
1 0 0 0 
0 - 1  0 0 

0 0 0 i 
0 0 - i  0 
0 i 0 0 

--i  0 0 0 

O'Y 

Oy 

-g;i 
1 0 0 0 
0 1 0 0 + 
0 0 - 1  0 
0 0 0 - I  

mc2,~ 

l~176 0 1 0 ih Ox~ 
0 0 1 at 
0 0 0 

where 'I" = A ~'. 
This is Dirac's equation. Thus, we have shown that the entity formed 

by a spherically rotating disturbance of the manifold is a Dirac particle. 
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Evaluating xI,, we have 

I 
--2 1/2 0 2 -1/2 0 

"I' = 0 2 -1 /2  0 2 -1 /2  
2-1/2 0 2-1/2 0 

0 2 -  1/2 0 2-  1/2 

• 

~1 e+ 
~b2e - 

(l+v,/c) 
fl r  Cfl 

(V x -- iVy) (1 -- V/C) 
cfl 'Pie+ fl 

~2 e - 

~2 e - 

1 l+v~/c)~ le+_(vx+ivy~  

+(1 
~ } ~ b l e  -- 2--~+ 2 1 / ~  ~bxe- 

(~l-~+ l+vz/c)~?le+--(Vx+iVy)*2e- 
2l/2fl 21/2flC 

(vxi, ,  + i1 1,.) 
} *le + 21/~ 21/2fl ' 2  e -  

For the stationary particle, 6=  0, and 

0 
xit = - 21/2@2e-i'a 

21/2~plei~Ot 
0 

The factor 21/2 is unimportant. We started with the normalized 2-spinor 
§ and have derived what is called a 4-spinor, q', which is not 

normalized. The normalization of the 2-spinor was arbitrary, and was 
based upon selecting a unit hypersphere for SU(2). Had we chosen a 
hypersphere of radius 2 -1/2, then our  4-spinor would have magnitude 
xI'*xI'-- 17 where ,I,* is the conjugate transposed row matrix. We could then 
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absorb the 21/2 factors by writing ffl = 21/2d?1 and t~2 = 21/2~b2 to produce a 
normalized 4-spinor, 

0 
_ ~b2e - Rot 

~ 1  ei~ 

0 

in  w h i c h  I~1"1~1 + ~2"~2 = 1. 
Now if we had begun by assuming our manifold to be in the state 

[,,e- ] and repeated the previous calculations, we would have described by [,2e + 1' 

found the corresponding 4-spinor for the system at rest to be 

_ t ~ l e  - R o t  - 

0 
0 

~ 2  e Rot 

All other spin directions also satisfy the Dirac equation. For example, 
y axis spin represented by the spinor 

si o,l[0 ] 
sin ~0t cos ~0t ~'2 

(see page 455) corresponds to the renormalized Dirac spinor 

( -- ~1 + i~2) e - i ' ' t  

1 (--  i~ 1 -- ~2)e  -i ' ' t  

2 (~1 + i~2)e i ' t  

( -- it~l + ~2)e  i~t 

for a particle at rest. The most general Dirac 4-spinor for a particle at rest 
is 

1 

{ ( -- 1 4" n)~l  + (i)~ "4- ])~2} e-i'~t 

{ ( - / m  + 0 ~ , + ( -  1 - , , ) , ~ , }  e-"~' 

{(1 + n)t~l + (ira + l )~2}  ei'~ 

( (  - im + l)t~l + (1 - n)t~2}e i'~t 
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being derived from the 2-spinor 

cos o~t + in sin o~t 

( m + il )sin o~t 

where l, m, n, are the direction cosines of the spin axis. 

cos o~t - in sin o~t t~2 

7. PARTICLE STATES 

Earlier (page 455) we selected a particular combination of initial 
configuration and spin axis of our rotational mode and labeled it the 
"normal spin state" in order to contrast it with the "antispin state" 
obtained by reversing the spin. We also defined "inversion" of those states 
from the "up" to the "down" orientation. We shall now compare those 
labeled spin states with their corresponding 4-spinors. 

By comparing these results (Table II) with those of standard quantum 
theory, we see that what we have called the "antispin states" produce 
solutions that are normally applied to the electron. Our "normal spin 
states" therefore correspond to the positron. The theory is symmetr ical .  We 
no longer need to postulate the existence of holes in a sea of negative 
energy states for the positron as is done in standard theory. We assert that 
all mass and energy are cyclical disturbances of the continuum, and that 
their measures are proportional to their frequencies. There is, therefore, no 
such thing as negative energy any more than there is negative temperature, 
in the absolute sense. 

There is no immediately obvious reason why the spinning continuum 
must, in practice, be either a particle or an antiparticle. Presumably, some 
basic restriction forbids the continuum of intermediate states in free 
particles suggested by the formula at the end of section 4 (page 456). It 
would appear that the rotation axis is locked into the configuration at any 
given instant. Of significance is the fact that the antispin states are mirror 
images of the corresponding normal spin states (this can be seen by 
examining the model of spherical rotation). 

We have produced a theory of particles and their states that, contrary 
to traditional quantum theory, is independent of measurements made on 
the particles. A particle, as such, is unobservable (see Appendix, page 456). 
Measurements can only be made by interacting with the particle, and the 
only tools for investigation are other regions of distorted continuum (we 
have here made the presumptive leap of assuming photons to be undula- 
tions of the space-time structure). Interactions will be governed by rules of 
wave interference and by whatever geometric conservation laws turn out to 
be fundamental laws of the universe. 
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TABLE II. Comparison of 2-Spinor and 4-Spinor Spin States 

Name of state 2-Spinor 4-Spinor 

[~ 1  o am.p  up Ieo'l 0 
e i~ t  

o 

I~ 
e icot 

Pmtispin "up" o 

0 

I~ o 

The negative coefficients of the antispin 4-spinors are of no 
significance and can be eliminated by a time shift of ~r/to. 

It is clear that, in order to find the position of the particle, it is 
necessary to locate the center of the spinning core. This means that the 
whole disturbance that constitutes the particle has to be confined. This 
confining process, which is implemented by other manifold disturbances, 
consists in so enriching the harmonic content of the particle's de Broglie 
wave that its momentum becomes unpredictably altered. Thus, the measur- 
ing process is limited by the indeterminancy principle--notwithstanding 
which, the particle does at all times have an exact location, and, when 
completely free of interactions with other particles, has a very definite 
momentum. 

Implied by the principles that have been formulated in this paper is 
the idea that there can be more complex disturbances that do not disrupt 
the continuity of space. An atom in a given energy state is probably an 
example of this higher-order complexity. This being so, the same principle 
that prevents spherical spin from exchanging rotational energy with its 
surroundings would also inhibit the atom from radiating energy. This 
allows for the existence of steady states of atoms within the structure of a 
classical theory of the continuum, and thus renders Neils Bohr's ad hoc 
hypothesis unnecessary. 
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APPENDIX 

A.1 LIE  G R O U P S  AND T H R E E - D I M E N S I O N A L  R O T A T I O N  9 

In order to analyze the nature of three-dimensional rotation, we shall 
construct what is called the Lie group space for the rotation. 

Let S be a ball free to rotate about  its center C. Let the initial position 
of S be represented in the Lie group space by the point O. If  S is rotated 
through angle 0 about  an axis / ,  its new position will be designated by the 
point in the Lie group space that lies 0 units f rom O on the line through O 
parallel to the axis l, and in the direction that a right-handed corkscrew 
would move if it were placed along l and turned through the angle 0. A 
rotation 0 in the reverse direction about  l is represented by a point 0 units 
f rom O but in the opposite direction from the previous point. Because a 
rotation of ~r units about  l will take the ball S into exactly the same 
position as the counterrotation -qr ,  it follows that in the Lie group space, 
we need only go as far as ~r units f rom O in each of the directions parallel 
to 1 in order to end up with a linear array of points representing every 
possible position of S that leaves 1 fixed. We can, therefore, identify the 
two end points er and -~ r  as one and  the same point. This construction is 
repeated for all the possible orientations of the axis l. 

The Lie group space, then, consists of a "sphere" of radius ~r units 
centered on O with diametrically opposite points identified. The name of 
this group is the proper orthogonal group in three dimensions and is denoted 
by the symbol 0 ( 3 ) + .  It  is also sometimes called the three-dimensional 
rotation group, but this is a misnomer  as we shall see in due course. 

A Lie group is, f rom a mathematical  standpoint, a fairly complicated 
structure. I t  can be thought of as being a compatible combinat ion of more 
basic structures. Thus it is, amongst  other things, a topological space, and 
for our purposes it will be sufficient to describe a topological space as the 
vehicle for those elements of geometry that are unaffected by  plastic 
deformat ions- -such  as the continuity or connectedness of the space: a 
property that is related to its homotopy type. 

In a topological space, the paths between two points are said to be 
homotopic if the one path can be continuously deformed into the other. I t  
is understood that all points on the path remain points of the topological 
space during the transition. If the initial and terminal points of a path 
happen to coincide, it becomes a closed path. By examining the closed 
paths that begin and end on a particular point, we can gain some idea 
about  the total or global structure of the space. 

9D. Speiser (1964). This article was the precursor of our theory. 
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These two 

considered 
one and the 
8 ~ e .  

Fig. 5. The rotating object under 
consideration. 

0 / / " - ~ ;  

Fig. 6. The Lie group space of the rotations. 

As an illustration, let us take the two-dimensional space of the surface 
of a torus (a figure shaped like an anchor ring or doughnut). Figure 9 is a 
picture of it. Emanating from the point P we see two paths, p~ andp2, that 
can clearly be deformed into one another; that is to say, they are homo- 
topic. The collection of all closed paths through P that are homotopic to 
one another forms a homotopic class, p~ and P2 are thus in the same 
homotopic class. The paths P3 and P4, on the other hand, cannot be 
deformed into one another or into pl or p2; they are members of two other 
homotopic classes. The first class mentioned, that of p~ and P2, has the 
unique feature of including the degenerate path, namely, the point P itself. 
Paths like Pl and P2 can be contracted continuously until only the point P 
remains. The point P, thought of as a degenerate path, is called a nullpath. 
The set of all homotopic classes together with their interrelationships (they 
form a mathematical group) characterize the space and designate its 
homotopy type. 

Of special importance to Lie group spaces is the type in which there is 
only one homotopic class associated with each point. This class necessarily 

Fig. 7. Two paths which can 
be continuously deformed into 
one another are homotopic. 

Fig. 8. A closed path. 



462 

Fig. 9. Paths on the surface of a torus. 

BaO.ey-Pratt and Racey 

Fig. 10. The Lie group space 
of 0(3) +. 

includes the null path: in other words, every closed path can be contracted 
into a point. A topological space of this type is described as being simply 
connected. If the topological space is also a Lie group, then it is called a 
universal covering group, because there is only one simply connected Lie 
group with a given local structure, and because all other Lie groups having 
the same local structure, but which are not simply connected, are homo- 
morphisms of it. 

These properties and definitions will now be exemplified by returning 
to the discussion of the orthogonal group in three dimensions. We recall 
that the group space of 0 ( 3 ) +  was a sphere of radius ~r with diametrically 
opposite points identified. 

Consider the closed paths that begin and end at O in Figure 10. A 
path Pl that remains everywhere within the sphere can be contracted into 
the null path at O. But what of a path that crosses the boundary of the 
sphere? Let P2 be the locus of a point that starts from O and passes out 
through the surface of the sphere at point P. Since P is the same as the 
diametrically opposite point P ' ,  the continuation of this path is traced by a 
point moving inwards from the point P ' .  If this path finally returns to O, 
we have a closed path. Can this path be continuously contracted into the 
null path? The answer is no. Any attempt to so contract P2 must, at some 
stage, reduce the path to one that is everywhere within the boundary of the 
sphere, like px. But in order to do that smoothly and continuously, the 
point P must sooner or later move closer to P '  until they meet. However, 
this is impossible, because P '  is always diametrically opposite P. Thus, all 
the paths that cut the boundary once and then return to O form a 
homotopic class distinct from the class that includes the null path. Hence, 
we have shown that 0 ( 3 ) +  is not simply connected. 

There does, however, exist a!Lie group space that is locally the same 
as O(3)+,  but which is simply connected. For, consider two spheres of 
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Fig. 11. The Lie group space of SU(2), which is simply connected, but locally the same as 
0(3) +. 

radius ~r centred on O and O', both replicas of 0 ( 3 ) +  except that a point 
on the boundary of the first sphere becomes identified with the point on 
the second sphere that corresponds to its diametrically opposite position 
(Figure 11). In this space, we can trace a pa thp  from O that leaves the first 
sphere at a boundary point P and reappears entering the second sphere 
from P' .  After crossing the second sphere, the path leaves at a point Q', 
and reappears in the first sphere at Q, whence it returns to O. It is now 
possible to contract the p a t h p  towards O, since we are free to allow P '  to 
approach Q'  (and, simultaneously, P must move towards Q). Any closed 
path through O can, therefore, be contracted into the null path. Hence, the 
space is simply connected. This Lie group space is the universal covering 
group of 0 ( 3 ) + ,  and is called SU(2) for reasons that were given on page 
454. 

A.2 PHYSICAL INTERPRETATION (Bolker, 1973) 

We recall that the group space 0 ( 3 ) +  was a geometrical description 
of the rotations of a ball, S, in which every position of S was represented 
uniquely by a point in that space. The initial position of S was represented 
by the point O. 

Let us find the physical meaning of traversing a small closed path 
through O. As we leave O in a given direction, the ball S turns about the 
axis parallel to that direction. If we now travel across the Lie group space 
keeping roughly the same distance from O, the ball S will rotate about 
various axes in such a way that it remains at roughly the same angular 
deviation from the initial position. Finally, as we return to O, the ball 
decreases its angular deviation until it is right back in the position from 
which it started. 
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movement of a 
point on the 

. sphere 

Fig. 12. A small wobble of the sphere S picks out a small path through O in the group space 
0(3)+. 

How would one describe the motion executed by S?  Clearly, the 
answer is that S wobbled; that is to say, it executed the sort of motion that 
could have been imparted to the ball if it were held firmly in the hand, the 
wrist and elbow given a few flexes and twists, and then relaxed back into 
the original position. 

We can now give a physical interpretation of homotopy. A closed 
path on O that is just a shade displaced from the previous path represents 
a wobble of S in which the motions occur around axes that are slightly 
displaced from the previous axes, and to an extent that is a shade different. 
The transition from one path to the other, then, consists of either ex- 
aggerating or diminishing the motion. Thus, the sequence of paths in the 
Lie group space constituting the smooth transition between two homotopic 
paths requires that the motions of the ball S underlying the one path be 
capable of smooth and gradual exaggeration until they coincide with the 
motions underlying the final path. All the paths of the homotopic class 
that includes the null path are describable as wobbles of a greater or lesser 
extent; that is, they can be demonstrated with S held firmly in the hand. 

In 0 ( 3 ) + ,  a closed path that leaves O, that moves straight along a 
radius until it leaves the surface of the space, that reappears at the 
diametrically opposite point, and then moves straight back to O corre- 
sponds to one complete revolution of S around an axis parallel to the path. 
This path is not in the same homotopic class as the null path. In SU(2), 
however, the Lie group space of 0 ( 3 ) +  is represented twice. A closed 
straight path that leaves O along a radius crosses the second space via the 
diameter through O'  before reappearing in the first space and returning to 
O. The ball S, in this case, makes two complete turns around an axis 
parallel to the path. But SU(2) is simply connected; therefore, the path 
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Fig. 13. A closed path in SU(2) consisting of two parallel diameters through O and O' 
represents a double rotation of S. 

described is homotopic to, and, so, contractible into the null path. This 
means that the motion of S (i.e., a complete double rotation around an 
axis) can be arrived at by a smooth exaggeration of a wobble, which, in 
turn, means that it is possible to grasp a ball in the hand, and, by flexing 
of wrist and elbow joints, etc., to execute a complete double (but not 
single) revolution of the ball about a fixed axis, and thereby end up in the 
same stance as one began. 

This is, in fact, the basis of an old party trick in which the joker twirls 
a bowl of soup around its vertical axis so as not to spill a drop. The trick 
requires raising and lowering the bowl somewhat during the gyration to 
accommodate the awkward jointing of the arm; but it is, nevertheless, an 
illustration of the above theory. The bowl makes two full turns in execut- 
ing the complete gyration. 

We can replace the human arm and the soup bowl by a long coiled 
spring and the ball, S. The top of the spring can be clamped to a stationary 
framework in imitation of the shoulder connection, and the bottom end 

S 

Fig. 14. Coiled spring simulating a human arm. 
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Fig. 15. Each half turn of S forms a twist in the two tracers (dotted lines), which can only be 
undone by the displacement shown (solid lines). 

can  be ben t  a r o u n d  and  b rough t  up  unde rnea th  the  bal l  in imi t a t ion  of the 
h a n d  (F igure  14). The  un i fo rm  flexibi l i ty  of  the spr ing al lows the ba l l  to 
spin  wi thou t  the a w k w a r d  ver t ica l  m o v e m e n t  tha t  occurs  in the soup bowl  
trick. 

The  mo t ion  of  the bal l  a n d  spr ing can  be  unde r s tood  in deta i l  b y  
cons ider ing  two lines d rawn  oppos i t e  one ano the r  down  the length of the 
uns t r a ined  spring. The  spr ing is fo rced  to b e n d  in assuming  the above  
conf igura t ion ,  bu t  it will swing into  the p lane  tha t  minimizes  its tors ion.  
E x a m i n a t i o n  of the  d iagrams  of  F igure  15 shows tha t  the conf igura t ion  of  
the  spr ing will ro ta te  at  hal f  the  angu la r  veloci ty  of  the ball .  1~ 

Now,  because  of  the shape  of this system, we can  a d d  ano the r  spr ing 
symmet r i ca l ly  oppos i te  to the one  above.  It, too, mus t  advance  at  half  the 
angu la r  veloci ty  of  the ba l l  a n d  will the reby  m a i n t a i n  its re la t ionship  with 
the first  spr ing (F igure  16). The  ques t ion  na tu ra l ly  arises: how compl i ca t ed  
a sys tem of springs can  pa r t i c ipa te  in  the mot ion?  To answer  this, we go 
back  to first pr inciples .  

Cons ide r  a ba l l  to which is a t t a ched  a large indef ini te  n u m b e r  of long 
na r row springs runn ing  rad ia l ly  ou twards  a n d  t ied at  their  ou te r  ends  to a 
f ixed f r amework  (F igure  17). Since the  springs are  flexible,  i t  is poss ib le  for  
the bal l  to execute smal l  wobb les  abou t  its center  wi thou t  causing any  

10Mentioned in Bolker (1973) are both Dirac's spanner--a demonstration of spherical 
rotation using strings attached to an asymmetric wrench--and, also, D. A. Adams's 
patented device for transmitting electricity to a rotating turntable without the use of slip 
rings. The Adams device is identical in its symmetry to our incipient model. A full and 
well-illustrated report on it appeared in Adams (1975). Just for the record, we would like to 
point out that our model depicted in Figure 1 was constructed and demonstrated in the 
Mathematics Department at Queen's University, Ontario, Canada in the fall of 1966. E. P. 
Battey-Pratt would like to acknowledge his indebtedness to Prof. A. J. Coleman for 
inspiration and to Hans Kummer who, in conversation, helped clarify the role of universal 
covering groups in the theory. 
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/ 

Fig. 16. A symmetric pair of springs. Fig. 17. Rays of springs emanating 
from a ball. 

entanglement of the springs, But we have seen that a double rotation of the 
ball can be developed by the continuous exaggeration of a small wobble. 
Now, the transition from a motion that does not cause the springs to tangle 
and knot up to one that does is necessarily abrupt and discontinuous, and, 
therefore; cannot occur during our continuous development of the wobble 
into a double rotation. 

Thus, we see that the springs in Figure 16 are but two of an infinite 
number of "rays" that can participate in the motion of the ball without 
knotting up. To find the disposition of the other rays, we simply note that, 
starting from the model of Figure 17 we must give the ball a half turn 
about a horizontal axis in order to put the vertical springs into the 
configuration of Figure 16. The ball may then be rotated about its vertical 
axis. This is the explanation for the validity of the models of Section 2 of 
the paper (page 448). 

2: 

Fig. 18. Springs in the plane perpendicular Fig. 19. As the ball is rotated about the z 
to the initial half turn about the x axis. axis, the axis of the ini t ialhalf  turn also 

rotates, 
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Now let us go back and follow through the same arguments for the 
case of two-dimensional rotation. We shall then produce a geometrical 
analogy that will illuminate the relationship between the above analysis 
and the conventional view of three-dimensional rotation. 

A.3 TWO-DIMENSIONAL ROTATION 

The Lie group space for the two-dimensional rotation of a flat object 
about some point in the plane is very simple. For  convenience, let the flat 
object be a circular disk D rotating about its center. Let the initial position 
of the disk be represented by the point O in the Lie group space. A 
counterclockwise rotation of D through an angle 0 is represented by a 
point 0 units to the fight of O in the group space. Similarly, a clockwise 
rotation, - 0, of D is represented by a point 0 units to the left of O. Since a 
rotation ~r brings D to the same position as the counterrotation - , r ,  we 
can identify these two points. Thus, the Lie group space is a line of length 
2~r units with end points identified. This may be thought of as being the 
circumference of a circle with O and the dual point ~r, -~r  diametrically 
opposite. The name of this Lie group is the proper orthogonal group in two 

Fig. 20. The rotating disk. 

These two points 
to be identified. 

Fig. 21. The Lie group space 0(2)+. 
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Fig. 22. The group space R derived from 0(2)+. 

dimensions, or 0(2)+.  It is often referred to, erroneously, as the two- 
dimensional rotation group. 

Since the Lie group space is one-dimensional, the only type of path 
that is homotopic to the null path through O is one that leaves O, goes to 
some other point, and then returns to O again by tracking back along its 
outward path. 0(2)+ is, therefore, not simply connected since it is possi- 
ble, by completing one or more circuits of the space, to return to O without 
back tracking. 

In order to construct the universal covering group of 0(2)+ (the 
locally isomorphic but simply connected group space), we duplicate the 
space as we did for 0(3)+,  and make the end point of the original space 
conterminal with the beginning point of the repeated segment rather than 
terminating with the other end of itself. We see, however, that we still 
cannot rejoin the other end point of the repeated space to the open end of 
the original because to do so would produce a circle, which is not simply 
connected. We have, therefore, to repeat the segment once more. Again, 
we come to an end that cannot be joined back to the first segment without 
creating a circular, noncontractible path. Thus, the repetitions of the 
segment never end, and the Lie group space of 0(2)+ must be extended 
indefinitely in repetitions of itself in either direction. The universal cover- 
ing group of 0(2)+ is, therefore, an infinite line. Because every point on 
an infinite line can be represented by a real number, the symbol for this 
group is R. It is the same as the Euclidean one-dimensional continuum. 

A closed path in R is effectively just a line segment that is traversed 
both ways, both out and back again to the starting point. Corresponding to 
such a path, the disk D turns by the specified amount, and then turns back 
again by the same amount to its starting position. That is to say, if one end 
of a string were affixed to the rim of D and the other end to a stationary 
framework, then a motion that corresponds to a closed path in R would be 
one in which, at the completion of the motion, the string would be back in 
its original configuration. For, if D makes several full turns in one 
direction, then the string (which, remember, is confined to the plane in this 
case) becomes wrapped around D that many times. But D then has to turn 
back again by the same number of turns in order to complete the motion 
while the string unwinds itself again and so returns to its starting config- 
uration. 
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Physically speaking, just as the motions of the ball S corresponding to 
every closed path in SU(2) can be developed by the continuous exaggera- 
tions of a slight wobble, so can the motions of the disk D corresponding to 
closed paths in R be developed by the continuous exaggerations of a small 
oscillation of D. 

A.4 CYLINDRICAL AND SPHERICAL ROTATION 

Hitherto, mathematicians have regarded 0 ( 2 ) +  and 0 ( 3 ) +  as rota- 
tion groups. The concept of "rotat ion" implies motion so that we are as 
much concerned with the dynamic process of a body getting from its initial 
to its final position as we are with the positions themselves. At the 
beginning of this paper, we described how the movements made by a dog 
tied by a long lead could be traced by the fact that the rope was wrapped 
around his kennel. This is a very old idea that deserves to be raised to a 
principle: the final configuration of a line connecting a moving point to an 
observer's stationary framework represents the motion of that point. 

Because, superficially, we discern the universe as being divided into 
matter and empty space, and because we habitually think of the latter as 
being the very epitome of nothingness, we are accustomed to thinking of 
motion as being something absolute--something unimpeded by interrela- 
tionships. In the past, mathematicians have described motion simply by 
giving the beginning and the end of a journey. However, in this paper, we 
maintain that motion is relative, and that there is, at all times, a topologi- 
cal connection between relatively moving objects. In two-dimensional 
rotation, therefore, the configuration of the string (the dog's leash) char- 
acterizes the rotation of D. In fact, if the string is played out from a fixed 
point next to the rim of D, if it is kept taut, and if D is of unit radius, then 
the length of the string becomes the radian measure of the rotation of D. 
Furthermore, it is positive or negative according to whether it is wound 
onto D in a counterclockwise or clockwise direction. It is also the measure 
of the distance from O to the relevant point (designating the rotation) in 
the group space R. Consequently, we can see that the rotation group in two 
dimensions is R not 0(2) + .  

fixed point 

f 

Fig. 23. String winding around a disc rotating in the plane. 
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Similarly, we have described three-dimensional rotation by attaching 
one end of a string to a rotating object and the other end to a stationary 
framework. It  is the configuration of the string that characterizes the 
rotation. We have, in this paper, erected a model in which all the possible 
configurations of a string are represented by points in the group space 
SU(2). Thus, the rotation group in three dimensions is SU(2), not 0 ( 3 ) + .  
And, furthermore, two full  turns of this model are equivalent to not having 
turned at all ! 

This seems to confound our very experience. To explain the anomaly,  
we shall draw upon an analogous example in geometry. Suppose we 
consider a circle in a plane, and then make a list of some of its salient 
properties. For example: 

(1) It is the locus of a point that moves so as to be a constant 
distance f rom a fixed point called the center. 

(2) Its equation in the standard Cartesian coordinate system is 

x 2 +y2 = r 2 

Now if we ask for the three-dimensional analog of the circle, two possibili- 
ties arise: either we may  draw the circle out in the third direction 
perpendicular to the plane so as to form a figure in which we can map  
every point into a line. In  this case the above properties transform into the 
following: 

(1') It  is the locus of a line that moves so as to be a constant distance 
from a fixed line caned the axis. 

(2') Its equation in the s tandard Cartesian coordinate system is 

X2 +y2 = r 2 

Or, we may allow the third dimension to participate symmetrically with the 
initial two and end up with a figure whose properties are as follows: 

(1") It  is the locus of a point that moves so as to be a constant 
distance f rom a fixed point called the center. 

(2") Its equation in the s tandard Cartesian coordinate system is 

x 2 +y2  + z 2 = r 2 

These figures are, of course, respectively, the cylinder and the sphere. 
Similarly, we have two-dimensional rotation with its group R and 

punctiform center. There are, again, two principle extensions of this 
dynamic figure into three dimensions. The first is what we shall call 
cylindrical rotation. Here, the center of rotation in the plane is drawn out 
into an axis of rotation, and the mathematical  description of it is again the 
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group space R. Thus, angle again becomes the appropriate measure for this 
type of rotation. It is, furthermore, the only type that has ever been 
considered in the corpus of classical mechanics. 

The second type is what we shall call spherical rotation, whose 
mathematical description is the group space SU(2). In it, the three direc- 
tions of space participate more symmetrically in the mot ion)  1 It has not 
hitherto been recognized or fully understood for the reason that hardly any 
examples of it occur in the world of our direct physical experiences. All of 
the rotating things we normally see--spinning tops, motor shafts, wheels, 
etc.--exhibit  rotation of the cylindrical type. To explain why this is, we 
reemphasize that the string method of classifying rotation incorporates a 
description of the connection between the object and a stationary frame- 
work. 

With cylindrical rotation, its group R is infinite or noncompact (to use 
topological terminology). If an object rotates in this mode, the point 
representing the string configuration moves steadily out along R in one 
direction to become further removed from its starting position. Physically 
speaking, the string becomes more and more wound onto the rotating body 
(or twisted up off the end of it), and so a connecting medium between the 
body and a stationary framework would have to possess infinite powers of 
extension. In fact such a medium does not exist, and the only two 
alternatives for avoiding this confusion characterize cylindrical rotation. 
The first is that the connecting medium shears and so develops a surface of 
discontinuity. Such a surface, called a bearing surface, is well known in 
mechanical examples where there has to be a supporting connection 
between the rotatirrg body and its stationary reference frame. The other 
possibility is that the connecting medium holds, but  that the stationary 
framework yields to take up the motion of the rotation. In this case, the 
rotation is transferred to the connected body. There are, then, these two 
aspects of cylindrical rotation; namely, the existence of bearing surfaces, 
and (or) the transmission of the rotation to or from the moving body. 

On the other hand, with spherical rotation, the group space SU(2) is 
compact, and the path representing a steady rotation about a fixed axis is 
closed and finite, so that the string passes through a cycllw configuration to 
keep returning to its initial position. The interconnecting medium in this 
case does not shear, nor does the stationary framework have to yield. Thus, 

nThe concept of an "axis" of rotation is now severely localized. It only extends over the core 
region, that is, the ball S in our above-quoted models. This ball could, theoretically, be 
contracted to zero radius, leaving only a rotating point a n d r e  undulating medium. This 
would be the strict model of spherical rotation in which the analogy with the geometric 
sphere would be exact. 
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spherical rotation is characterized by the following: namely, the rotating 
body does not transmit or receive rotational energy, but is surrounded by a 
medium that undergoes a cyclical "wave" motion. This makes the notion 
of spherical rotation elusive to our senses, because, in the world of 
macrophysics, motion has generally to be maintained against dissipative 
forces like friction. But spherical rotation cannot receive energy from a 
propulsive source. In the example given near the beginning of this paper of 
a steel ball embedded in jelly, it would be impossible to sustain the motion 
mechanically, say by a driveshaft or the like, because such a connection 
would necessarily act in the cylindrical mode. An effective driveshaft 
would clash with the undulating motions of the jelly and rip it to pieces. 
For this reason, we suggested that the ball be magnetic and be propelled 
by magnetic forces. A mechanical model of spherical rotation may still be 
propelled by the overriding magnetic forces acting in the cylindrical mode. 
(Note, however, that an electromagnetic example of spherical rotation 
could not exchange electromagnetic energy.) There are other ways to build 
visible mechanical models of spherical rotation, but to run them requires 
some sophisticated device that is essentially a bit of trickery as far as the 
purity of the model is concerned (see footnote 10). 

5A. MATHEMATICAL REPRESENTATION OF SPHERICAL 
ROTATION 

In Section A.1, we stated that the Lie group space SU(2) consisted of 
two spheres and their interiors. If these two spheres were superimposed, 
their surface points would be identified in diametrically opposite pairs. By 
examining an analogous situation in two dimensions, we shall see how to 
construct a more integrated model of this space. 

Consider two disks with their perimeter points identified in what 
would be diametrically opposite pairs if the two disks were superimposed 
(Figure 24). If these two disks were embedded in a three-dimensional 
Euclidean space and deformed into two hemispherical surfaces, they would 
fit together with identified point-pairs coinciding so as to form a sphere. 
Thus, the whole space consisting of the two disks becomes equivalent to a 
complete spherical surface. 

Likewise, the two spherical surfaces of SU(2) can be embedded in 
four-dimensional Euclidean space and deformed into two four-dimensional 
hyperhemispheres. They can then be brought together over a spherical 
surface of contact in such a way that all identified point pairs coincide. 
The result is the bounding volume of a four-dimensional hypersphere. The 
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2~ 

Fig. 24. Two disks, in which the diametrically opposite circumferential points on alternate 
disks are identified, are together equivalent to the surface of a sphere. The centers C, C' end 
up diametrically opposite on the sphere. 

centers O and O'  of the original two components of SU(2) become 
diametrically opposite points. 

How large is this hypersphere? We recall that in the space of SU(2), 
each sphere had a radius of ~r units corresponding to the radian measure of 
half a turn of the  physical body being rotated. Thus, a complete circuit of 
SU(2) corresponds to a double turn of the ball and has a length of 4~r 
units. In a hyperspherical model of SU(2), this circuit corresponds to one 
of the great circles formed by the intersection of the hypersphere with a 
plane through the center. It follows that the radius of the hypersphere is 2 
units. In switching our attention from the motion of the ball to that of the 
string configuration (of Figure 16), we note that it rotates at half the 
frequency of the ball. Therefore, if we use the measure of its phase angle to 
induce a measure on the hypersphere, the latter will have a radius of one 
unit. Of key importance is the fact that each point in the bounding volume 
of the hypersphere represents, uniquely, a particular configuration of the 
spherical rotation. We lose nothing by declaring that the radius of the 
hypersphere can be chosen to be any length. 

SUMMARY 

Just as the circle in the plane relates to both the cylinder and the 
sphere, so, too, does rotation in the plane relate to the cylindrical and 
spherical modes of three-dimensional rotation. Classical mechanics has, 
hitherto, been deficient in that it has only recognized the cylindrical mode. 
Spherical rotation is the simplest mode in which one part of space can spin 
in relation to another without disrupting its continuity. A moving vortex 
spinning in the spherical mode satisfies Dirac's equation for an elementary 
particle. Hence, mass and energy can be explained as being manifestations 
of the rotation of space. Our geometric model demonstrates the difference 
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not only between spin-up and spin-down states, but also between the particle 
and its antiparticle. 

The spherical rotation of space has a spinning center that can be 
identified with the position of the particle. As such, hidden variables exist; 
that is to say, there always exist an exact particle location and, generally, an 
exact momentum. It is an intrinsic feature of spherical rotation that the spin 
cannot be transmitted to or from the core, and, therefore, the position of 
the particle can be approximated only by bracketing the whole region of 
the disturbance--a procedure that also renders the momentum inexact. In 
this way do measurements become circumscribed by the indeterminacy 
principle. 
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